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Abstract

Bees are essential pollinators and their protection is rele-
vant to secure biodiversity and agricultural production.
MonViA-project members and partners collaborate in
monitoring projects to develop effective policies to sup-
port biodiversity in Germany. In the current case-study,
the impact of climate on honey bee population perfor-
mance was assessed. We modeled year-to-year Central-
European honey yield changes and found + 1°C tempera-
ture change to stimulate annual honey yield by + 0.9 kg
per colony, and + 100 mm precipitation to reduce honey
yields – 0.4 kg. In regard to different climate change sce-
narios for Germany, our modelling suggests a potential
+ 0.4 to + 0.8 kg honey yield gain per colony in 2050, as
compared to 2020. We conclude that the German honey
bee population may benefit by rising temperatures. We
discuss how bee performance is linked to weather and
how our analysis would be strengthened by including
more data, with a higher temporal and spatial resolution,
i.e., intra-annually and -nationally. Pollinator trend mon-
itoring should be extended with analyses that include
e.g., extreme weather conditions, disease loads, avail-
ability of floral resource, beekeeping practice, land use
and landscape structure.

Key words: Apis mellifera, honey bees, wild bees,
pollinator populations, temperature, precipitation,
climate, impact assessment

Zusammenfassung

Bienen sind essentielle Bestäuber und daher ist ihr Schutz
von zentraler Bedeutung für die Sicherung der biologi-
schen Vielfalt und der landwirtschaftlichen Produktion.
Innerhalb des Projekts MonViA werden viele Partner
zusammenarbeiten, um wirksame Strategien zur Förde-
rung der biologischen Vielfalt zu entwickeln. Wir präsen-
tieren eine Langzeit-Fallstudie wie sich Klima auf die Leis-
tungsfähigkeit von Honigbienenvölkern auswirkt. Verän-
derungen des mitteleuropäischen Honigertrags haben wir
in Bezug auf die Änderung von Temperatur und Nieder-
schlag modelliert. Eine + 1°C Temperaturänderung stei-
gert den jährlichen Honigertrag um + 0,9 kg pro Volk,
während + 100 mm Niederschlag den Ertrag um – 0,4 kg
verringert. Basierend auf Klimawandelprognosen im Zeit-
raum 2020–2050, schätzen wir eine potenzielle Ertrags-
steigerung von + 0,4 bis + 0,8 kg Honig pro Volk. Wir
schließen daraus, dass die Honigbienenpopulation in
Deutschland von steigenden Temperaturen profitieren
könnte. Weiterhin diskutieren wir, wie die Bienenleistung
mit dem Wetter zusammenhängt und wie unsere Analy-
sen durch die Einbeziehung weiterer Daten, mit einer
höheren zeitlichen und räumlichen Auflösung, gestärkt
werden könnten. Die Einflüsse extremer Wetterbedingun-
gen, imkerlicher Praxis, Krankheitsbelastung, Verfügbar-
keit von Nahrungsressourcen, Landnutzung und auch
Landschaftsstrukturen sollten im Rahmen des Monito-
rings der Bienenvitalität miterfasst werden.
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Introduction

Honey bees and non-Apis wild bees provide the indis-
pensable service of pollination, for both wild plants as
well as crops. Protection of bees therefore is of utmost
relevance to human nutrition, society and the environ-
ment. The need and urgency for protective measures is
high considering the progressive loss of biodiversity,
involving decline of vegetation, animals and interlinking
ecosystem functions, such as bee-pollination (KEVAN and
VIANA, 2018; IPBES, 2019; DIAZ et al., 2019). Earth’s
entomofauna shows steep declines in many regions
(BIESMEIJER et al., 2006; HALLMANN et al., 2017; BIDAU,
2018; LISTER and GARCIA, 2018; POWNEY et al., 2019;
FORISTER et al., 2019; SEIBOLD et al., 2019; HALLMANN et al.,
2020). However, a baseline with spatially inclusive and
comprehensive data is missing, and much needed
(DIDHAM et al., 2020). To protect and improve vitality and
diversity of bee populations on the long term, we need
general trend monitoring to find robust indicators to
develop effective measures, to support the performance
and vitality of bee-pollinators.

Several factors are implicated in the decline of pollina-
tor populations, including habitat loss (SEIBOLD et al.,

2019), landscape fragmentation, pesticide use (WOOD-
COCK et al., 2017), parasites and pathogens (SCHROEDER

and MARTIN, 2012; CORNELISSEN et al., 2019), and climate
change (SÁNCHEZ-BAYO and WYCKHUYS, 2019) as main
drivers concerning bees. In terms of floral resource conti-
nuity, especially habitat and climate are major drivers in
provisioning bees with a balanced and high-quality nutri-
tion (pollen and nectar), in particular at times of rearing
offspring. Intensive agricultural production systems of-
ten cannot cover nutritional needs for pollinator popula-
tions – which may contribute to inadequate crop pollina-
tion (Thompson, 2001). The current trend of declining
pollinator abundancies within agricultural landscapes
may be countered by cross-linking habitats with near-
natural vegetation and flowering strips or hedgerows
(SCHULTE et al., 2017; DOLEZAL et al., 2019; SEIBOLD et al.,
2019).

With this study, we aim to provide perspective on
long-term monitoring of honey bee vitality, regarding
many interactions, e.g. between land use, climate and
bee health. Populations are influenced by many factors
that may change over time, thus trend monitoring using
long-time data series will help to understand the driving
factors to vital pollinator populations. Our broader re-
search scope is framed within a nationwide monitoring
of biodiversity in agricultural landscapes called MonViA
(see Table 1). Project MonViA aims to investigate which
policy measures have a positive influence on agricultural
biodiversity, including bee population health and diversi-

Table 1.  MonViA project overview.

National Monitoring of Biological Diversity in Agricultural Landscapes – a project on behalf of the 
German Federal Ministry of Food and Agriculture, involving the Federal Agency for Agriculture and 
Food, the Thünen-Institut and Julius Kühn-Institut.

Why MonViA Land area in Germany is 50% used for agriculture. According to many studies, agriculture is a key 
driver of biodiversity decline, and biodiversity changes affect the performance and stability of 
agricultural production. Key Question: Which measures need to be recommended by policy makers 
to promote biodiversity, e.g., of bee pollinators?

What we do The Institute for Bee Protection (Julius Kühn-Institut) works on five subprojects.
1) Monitoring of honey bees: Extensive data from various projects exist, e.g. on honey yields, bee 
health parameters, and population densities. We aim to combine and perform multivariate 
long-term trend analyses.
2) Monitoring of wild bees: We aim to facilitate the central collection of nationwide recording data 
on wild bees: from literature research, expert reports, and from collectors.
3) Hymenopterans in orchards and vineyards: A systematic study on management practice 
impacts on the biodiversity of wild bees and wasps.
4) Citizen Science: A public mobile phone application will collect site-specific data on honey bee 
and wild bee occurrences.
5) Digital platform: Current and historic data on wild and honey bees, as well as climate and land 
use, are to be brought together in a national database. The repository is used to improve insight 
into the effects of land use on distribution and vitality of bees, and to enable regional assessment 
of pollination services.

How We will cooperate with many German partners to encompass regional and national datasets on 
wild and honey bees from institutions, experts, farmers, beekeepers, and citizen scientists.

Need Long-term, continuous, comprehensive biodiversity data collection for Germany. Within MonViA, 
monitoring data are harmonized with other national and international monitoring programmes, to 
allow reciprocal support and advantage.
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ty. A large scale monitoring can provide a strong scientific
basis for determining measures to promote and fund
affirmative action, towards safeguarding appropriate
habitats with sufficient resources for bees.

The complexity of climate change is currently much in
focus of biodiversity concerns, because not only average
weather conditions are shifting, but also extremes such
as heat and droughts are increasing (WAGNER, 2020).
Global warming may cause mismatched plant-pollinator
interactions (SCAVEN and RAFFERTY, 2013; GÉRARD et al.,
2020). When native ranges become inhabitable due to
climate change, both plants and pollinators may need to
shift their habitat ranges, if possible, in particular for
highly adapted species. Some native bee species, such as
bumble bees in North America and Europe, have been
reported to be pushed toward more Northern ranges, or
otherwise become extinct (KERR et al 2015; SOROYE et al.,
2020). Alternatively, other bee species may profit from a
warmer climate. For instance, the Western honey bee
(Apis mellifera) is an African/Mediterranean species in its
evolutionary origin (WHITFIELD et al., 2006), hence this
bee potentially performs better if summers in Central-
Europe become warmer and dryer.

In the current case-study, we explore to what extent
climate affects honey bee colony productivity in Ger-
many. Honey yield per colony is a good proxy to measure
colony vitality, because it is based on colony health and
the availability of forage in the surrounding habitat. We
expect increasing temperature (T) to be beneficial to
honey yields, for instance via stimulating bee activity,
and by stimulating the growth of floral resources. Precipi-
tation (P) is also essential to colony development, in
regard of floral resource development. Notwithstanding,
honey bee foraging may be impeded by long periods of
rainfall, or by severe drought, thus precipitation may also
be a restrictive variable to honey yields (HE et al., 2016).
The derivative question is to what extent the whole pop-
ulation is affected by climate change. To answer this, we
model the relationship between environmental condi-
tions and colony performance for Central Europe in gen-
eral, and predict long-term change in colony perfor-
mance due to climate change for Germany in particular.

Materials and Methods

Honey yield per colony – a proxy for colony performance
– was analyzed with linear modeling. We describe how
year-to-year honey yield is affected by average annual
weather variables. The analysis was performed on rela-
tivized data (see below), independent of long-term
changes in honey production (e.g., differences in bee-
keeping practice, economy, emerging pests, data collec-
tion, etc.).

Honey production and bee colony data (1961–2017)
was taken from the FAO database (http://
faostat.fao.org), which is based on data collected by the
Deutscher Imkerbund e.V. (D.I.B.- Mitgliederstatistik).
We calculated yearly honey yield (Y) data by dividing

honey production (in tons) by population size (number
of hives). Weather data, i.e., yearly average temperature
and precipitation values for the period 1961–2017 were
taken from the CEDA archive (http://archive.ceda.ac.uk;
CRU CY 4.02). Temperature data (T) were in °C, and pre-
cipitation data (P) were in millimeters (see Fig. 1E; 1 mm
= 1 L/m2), with precipitation effect size summarized into
decimeters (see Fig. 2B; 1 dm). The weather impact anal-
ysis on honey yields was performed using data of six Cen-
tral European countries (EU; n = 342). The countries
were Germany and its neighbors (DE, FR, CH, AT, TCH,
PO), excluding countries with insufficient data (DK, NL,
BE, LU). We fused data of Czech Republic and Slovakia
into former Czechoslovakia (TCH) to have a continuous
data set for 1961–2017 (MORITZ and ERLER, 2016).

Data analyses and modeling were performed using
JMP Pro 15.1.0 software. For Germany, Temperature (T)
and precipitation (P) data were analyzed over time by
means of linear regression (1961–2017; n = 57 years).
Linear Mixed Effects Models were used to assess if honey
yields in Central Europe were relatively lower or higher
(ΔY) according to years being relatively colder or warmer
(ΔT) and/or wetter or dryer (ΔP). The data ΔY, ΔT and
ΔP were calculated per country and per whole year, rela-
tive to a baseline average of ± 5 neighboring years, e.g.,
ΔY year x = Yyear x minus the decade average (Yyears x-5, x-4,

x-3, x-2, x-1, x+1, x+2, x+3, x+4, x+5). This weather impact analy-
sis (EU model) included ΔY as response variable, with
the predictor variables ΔT and ΔP. We further included
country identity as random factor (6 levels), and three in-
teraction terms: ΔT × ΔP, ΔT × Country, ΔP × Country.
Non-significant interactions (p > 0.05) were removed
from the model. The model intercept was set to zero since
all data values were relative and on average zero.

Climate change prediction for Germany are listed in
Table 2. A best-, an intermediate-, and a worst-case
greenhouse gas concentration scenario (Representative
Concentration Pathway (RCP) 2.6, 4.5 and 8.5, respec-
tively) were provided by Germany's National Meteoro-
logical Service (Deutscher Wetterdienst). We estimated
yearly temperature and precipitation averages for years
2020 and 2050, and the change (∆) over this period, by
linear interpolations of baseline values for the period
1971–2000 (8.5°C and 773 mm) and the climate predic-
tions for the period 2031–2060 (Table 2).

Results

The annual population size of honey bee colonies in Ger-
many over the period 1961–2017 was on average 1.3 mil-
lion hives ± 0.42 SD with an average of 21 thousand tons
± 5.5 SD honey produced per year (n = 57) (Fig. 1; A, B).
The yearly honey yield per colony was on average
18.8 kg ± 8.6 SD. Honey yields in Germany are increas-
ing, with + 0.44 kg annually (Fig. 1C; F1,55 = 144.5,
p < 0.0001, R2 = 0.72, Formula: Yield = –853 + 0.438 ×
year). The absolute honey yield data showed annual
autocorrelation (ACF = 0.71), i.e., the honey yield results 
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of one year tended to be similar to proceeding and/or
succeeding years.

Over the period 1961–2017 the yearly mean tempera-
ture and precipitation in Germany were 8.9°C ± 0.8 SD,
and 699 mm ± 83 SD, respectively. The average tempera-
ture in Germany increased significantly, with 1.9°C
(Fig. 1D; F1,55 = 46.2, p < 0.0001, R2 = 0.46, Formula: T
= –58.9 + 0.034 × year). Precipitation did not significant-
ly change (+23 mm) over the period 1961–2017 (Fig. 1E;
F1,55 = 0.34, p = 0.55, R2 = 0.006, Formula: P = –80.7
+ 0.39 × year).

Regarding the data of six Central-European countries,
we found years with high temperature to stimulate honey
yield (Fig. 2A; ΔT: F1,339.3 = 7.07, p = 0.008), while a high
precipitation to reduce yield (Fig. 2B; ΔP: F1,323.7 = 4.69,
p = 0.031). The interaction ΔT × ΔP showed that tempera-
ture and precipitation affected honey yields inde-
pendently (F1,4.88 = 1.35, p = 0.30). The interaction ΔT ×
Country showed that yield stimulation by temperature is
a valid effect for Central Europe in general, since the
effect did not differ between particular countries (F1,319.2
= 0.86, p = 0.51). The interaction ΔP × Country result
showed that yield decline by precipitation is also a valid
effect for Central Europe in general with no difference
between countries (F5,323.3 = 0.18, p = 0.97). The three
non-significant interactions were removed from the
model.

The Central-EU-wide model found + 1°C temperature
change to stimulate honey yield with + 0.9 kg per colony,
while + 1 dm precipitation change to reduce honey yield
with – 0.4 kg per colony (Fig. 2C). A low mean R2 value
of 0.08 (n = 6 countries) suggests a weak model fit, with
8% annual yield variation explained by the annual aver-
age temperature and precipitation data, and the remain-
ing 92% being unexplained variation.

The EU weather model coefficients (Fig. 2C), com-
bined with a 30 year climate prediction for Germany
(Table 2), predict honey yield per colony to increase with
+ 0.4 kg, + 0.5 kg or + 0.8 kg, due to climate change, un-
der best-, intermediate-, and worst-case green house gas
concentration scenarios, respectively. With the approxi-
mate 0.9 million hives in Germany to date, these scenar-
ios reflect a potential national production increase of 383
tons, 484 tons and 677 tons honey in 2050 as compared
to 2020, due to climate change. These predictions come
with the cautionary note that we ignored autocorrelation
trends within temporal datasets, and that we based the
predictions on linear relation assumptions.

Discussion

Considering the high economic and natural value of pol-
lination, it is important to maintain healthy bee popula-
tions to safeguard adequate pollination for crops and
wild plants. However, bee pollinators globally are facing
problems, with reduced biodiversity and declines in pop-
ulations (POTTS et al., 2010; KEVAN and VIANA, 2018). In a
case study for Germany, we investigated long-term honey

Fig. 1. Central-European honey bee and weather data. Shown are
annual data on total honey bee populations (A), total honey produc-
tions (B), mean colony yields (C), mean temperatures (D), and mean
precipitations (E). Lines connect dots of sequential yearly data, per
country (see legend), for the period 1961–2017.
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bee colony performance, with a focus on potential effects
of climate change. Our model for Central Europe indi-
cated a significant positive impact of higher annual tem-
perature on honey yield, as well as a significant negative
impact of annual precipitation on honey yield. Sub-
sequently, changing climate variables (Table 2) might
affect the German honey bee population positively, as
our estimates predict an increase in honey production.

We suspect two underlying principles to drive effects
on honey yield, as measure of honey bee performance.
On the one hand, climate affects vegetation develop-
ment, thus determines the availability and quality of flo-
ral resources for bees (OGILVIE et al., 2017). On the other
hand, daily weather conditions can affect bee foraging
behaviors directly, i.e., by temperature (AUBLET et al.,
2009; COMBA, 1999), rain (HE et al., 2016), but also po-
tentially by wind (COMBA, 1999; HENNESSY et al., 2020).

However, in absence of day-to-day environmental data,
with parallel data on colony growth, our case-study may
merely suggest the causation of climate impact on yearly
colony performance (Fig. 2). Additional analyses per sea-
son may further differentiate optimal performance con-
ditions for colonies, noting that warmth may stimulate
honey yields (this study), yet it may also detriment colo-
ny survival during the subsequent winter (SWITANEK et al.,
2017). We also note that the largest part in yield data
variation remained unexplained. Thus, our aim in con-
text of the MonViA-project is to combine a multitude of
long-term data sets, with day-to-day data sets, to improve
the impact assessments for bee performance.

In this study, we find that honey yields in several Cen-
tral European countries respond similarly to temperature
and precipitation impacts (Fig 2). Our results are specific
to the central-EU region, i.e., as perhaps more rain may

Fig. 2. Impact of annual weather on honey yields. Differences in honey yield ΔY are shown in relation to variance in yearly temperatures ΔT
(A), and precipitations ΔP (B) in six Central-European countries (colors shown at Fig. 1). The lines with shaded 95%-CI intervals (C), indicate tem-
perature (red) and precipitation (blue) deviation effects in our year-based honey yield model; ΔY = 0.87 × ΔT – 0.39 × ΔP.
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Table 2. Climate predictions for Germany. Temperature (T; in °C) and precipitation (P; in mm) predictions, given for a best-, inter-
mediate-, and worst-case scenario (RCP 2.6, 4.5, and 8.5). We interpolated data between the periods 1971–2000 (baseline) and
2031–2060, to obtain estimates for years 2020 and 2050, and change (∆) estimates for this period (in bold). Given values are me-
dians (50th percentile) with a range indication in brackets [15th percentile – 85th percentile].

Climate Predictions RCP 2.6 RCP 4.5 RCP 8.5

T period 2031–2060 9.7 [9.5 – 10.1] 10.0 [9.6 – 10.4] 10.5 [10.2 – 10.8]
T interpolation year 2020 9.2 [9.1 – 9.4] 9.4 [9.2 – 9.6] 9.7 [9.5 – 9.8]

T interpolation year 2050 9.8 [9.6 – 10.1] 10.1 [9.7 – 10.6] 10.7 [10.3 – 11.0]

∆T 2020 – 2050 + 0.6°C + 0.7°C + 1.0°C
P period 2031–2060 815 [775 – 842] 822 [789 – 851] 825 [775 – 857]
P interpolation year 2020 797 [774 – 813] 801 [782 – 818] 803 [774 – 821]

P interpolation year 2050 818 [775 – 847] 825 [790 – 857] 829 [775 – 863]

∆P 2020 – 2050 + 20.9 mm + 24.3 mm + 25.8 mm
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benefit colonies in dryer climates, but not in wetter cli-
mates. Similarly, very cold regions may benefit by a tem-
perature increase, while very hot regions may not. We
recommend and intend to extend this research further,
with additional data of colder and hotter regions
included, to estimate climatic ranges for optimal honey
bee colony performance, and for assessing the conse-
quences of seasonally dependent changes. Further, a
non-linear approach may allow to help identify perfor-
mance optima, for which we need more data, covering
large spatio-temporal scales.

We aim to include vegetation data into performance
analyses, to disentangle direct climatic effects on colo-
nies, from indirect climatic impacts via the development
and availability of floral resources (nectar and pollen).
Regarding vegetation, we note that with 16.7 million
hectares about half of the total area of Germany is under
agricultural land use. Our bee performance assessments,
in context of the MonViA project, will particularly consid-
er agricultural landscapes. For land use and landscape
structure are various long-term monitoring data already
available (e.g., crops grown, production rates, phenolo-
gy, intensive versus extensive management practices, use
of agrochemicals such as pesticides and fertilizers,
near-natural habitats, and heterogeneity and connectivi-
ty of landscapes). The combination of continuous data-
sets via beekeeping statistics, meteorological data, and
plant-phenology data, should enable to separate direct
and indirect impacts by weather on bees.

Within MonViA, we strive a 100% spatial coverage for
Germany, with spatial and temporal extensions of data-
sets, by means of including historical data and interna-
tional data, and combining academic data with federally
collected statistics, and other available data, like from
monitoring by remote sensing. As illustrated with our
multi-national data approach (Fig. 2), international con-
text is valuable to corroborate regional or national find-
ings. International data can enrich analyses of data that
are not nationally available. For example, colony per-
formance in light of an ongoing epidemiological moni-
toring of multiple honey bee diseases in Switzerland
(VON BÜREN et al., 2019), might be transferable to the Ger-
man situation.

Noteworthy is the opportunity to investigate the inter-
action between climate and bee pathogens. As disease
pathogeneses can be linked to weather conditions, global
warming may indirectly impact bee health and vitality.
For example, the reproduction of Varroa destructor, a
serious brood parasite of honey bee colonies is highly
linked to climatic conditions during the winter (NÜRN-
BERGER et al., 2019). Ascosphaera apis (chalkbrood) may
manifest itself by larval mycosis when bee larvae get
chilled (PUERTA et al., 1994). This disease is common in
social bees (ARONSTEIN and MURRAY, 2010), but also in
solitary bees (TORCHIO, 1992; JAMES, 2005). Understudied
is also the pathogenesis of bee viruses that plague colo-
nies, and their potential interaction with climate (DI

PRISCO et al., 2011; NATSOPOULOU et al., 2017). It is possi-
ble that, especially at times of nutritional stress and/or

under extreme climatic conditions, certain diseases may
prosper and contribute to the demise of bee populations.

Managed honey bees undeniably provide essential pol-
lination services, yet the high diversity of species and
families of solitary bees deserve more credit and atten-
tion as regarding their importance for pollination in
agro-ecosystems. As compared to managed honey bees,
wild bees are relatively understudied and it is difficult to
perform long-term trend monitoring regarding their
population statuses. If data sets on honey bees and wild
bees are combined, with inclusion of historical data, as
well as with data from current monitoring projects,
meta-level analyses opportunities are enabled. For exam-
ple, regarding stability and vitality of parallel living bee
populations in Germany, over time, a positive trend
observed for one bee population may be shared by anoth-
er, for instance in response to floral improvement via
global warming. In contrast, negative interaction of con-
cern are that certain bees may outcompete others via floral
resource collection (STEFFAN-DEWENTER and TSCHARNTKE,
2000; MALLINGER et al., 2017), and that pathogens can be
transmitted between species (DOLEZAL et al., 2016;
GRAYSTOCK et al., 2015; MALLINGER et al., 2017), mean-
while impacting populations of bees, and plants, differ-
entially (GÉRARD et al., 2020).

To our perspective, many of the factors that drive
honey bee colony productivity, may hold validity for the
performance of wild bees too, e.g., regarding floral re-
sources, pesticide exposure, diseases, etc., alongside
broader societal effects like land-use change. To date, the
majority of studies into pollinator declines focus on
honey bees, and to a lesser extent on bumble bees. For
Germany, but also for the world in general, there is a
notable lack of information on the solitary bees, which
make up the majority, over 85%, of the estimated
25,000–30,000 species of bees worldwide (BATRA, 1984).
The identification of wild bees is time-intensive and
expertise is very scarce, resulting in datasets which
tend to be regional and not open-source. However, in
light of progressive ease of data-management in this
age of digitization, we aim to direct effort to make
expert data on wild bee populations available, to per-
form inter-regional trend monitoring (i.e., national
and international). The multitude of investigations on
individual, population, and ecosystem levels should
enable a scientific data driven approach to support
insect populations.

The use of an overarching data platform, as foreseen in
project MonViA, envisions further integrations with pol-
linator relevant datasets. For honey bees, the integration
of epidemiological data on bee diseases, pesticide dam-
ages, and beekeeper data collections, are valuable for the
monitoring of long-term population health measures. In
addition, spatio-temporal use of pesticide application
data in agriculture may reveal the impact of detrimental
agrochemical applications. Integration of land use data,
such as remote sensing data on crops and landscape
structures, may help explain inter-regional variation in
bee performance.
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With the current momentum of increasing computa-
tion power, and genetic data analyses capacities, also
population genetics are valuable metrics to consider, for
instance in regard of the stability and resilience of envi-
ronmentally challenged populations (MATIAS et al., 2017;
THEODOROU et al., 2018; THEODOROU et al., 2020). Mating
frequency of honey bee queens reduce under more rainy
conditions (EL-NIWEIRI and MORITZ, 2011), which may
negatively affect queen performance (e.g., egg laying),
and the lower degree of polyandry may limit colony
performance (i.e., due to a low gene diversity and
lower disease resistance). For honey bees in particular,
different breeding lines are a very interesting variable
to consider in regard to colony performance. Some
strains may be climatically better adjusted, while
others may perform relatively better under pressure of
disease and parasites, e.g., Varroa destructor (NÜRN-
BERGER et al., 2019).

Many citizen science initiatives represent great oppor-
tunities in support of bee population monitoring. Data
collected by lay persons can support the analyses of sci-
entific data collections (BRODSCHNEIDER et al., 2019). Eco-
system monitoring efforts for wild bees can be supported
via, e.g., species identification for biodiversity assess-
ment. For honey bees, the involvement of beekeepers as
citizen scientists is extremely valuable. Data on colony
health can flow both from and toward beekeepers, noting
that honey bee colony health depends on the extent to
which beekeepers are informed on beekeeping practices
(JACQUES et al., 2017). Access to honey bee colony data is
essential within the MonViA project, for instance, to al-
low making resilience estimates. Whereas small colo-
nies are likely relatively vulnerable, large colonies may
be able to buffer climatic impact and better bridge times
of nutritional scarcity. Yet above all, honey bee colonies
are managed, which involves essential information
regarding beekeeping practices. The feeding of colo-
nies, the treatment of parasites and diseases, the travel
with colonies toward floral resources, are all beekeep-
ing interventions, likely highly explanatory to colony
growth, productivity and survival. Hence, an essential
component in the analyses of honey bee colony perfor-
mances is the consideration of beekeeping practices
(GENERSCH et al., 2010).

With the MonViA project we aim to provide an interna-
tionally linkable data resource for agricultural land-
scapes and beyond, to monitor national long-term biodi-
versity trends, in support pollinators and safeguard bio-
diversity as a whole. Based on our modelling results, we
conclude that the honey bee population in Germany
could potentially benefit by rising Central-European tem-
peratures. Albeit, population level data analyses based
on yearly country averages (Fig. 1) are most certainly
less powerful to assess environmental impacts on colony
performance, as compared to within year colony level
data. Notwithstanding, the combination of different
research approaches can enable to bridge knowledge
gaps, e.g., between short-term causality findings, and
observed long-term population trends.
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